Multi-dimensional functional principal component analysis
نویسندگان
چکیده
منابع مشابه
Multilevel Functional Principal Component Analysis for High-Dimensional Data.
We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high dimensional vectors observed at multiple visits. The proposed inferential methods do not require loading the entire data set at once in the computer memory and instead use only sequential access to data. This allows deployment of our methodology on low-resource computers where computations can be ...
متن کاملHigh-dimensional Principal Component Analysis
High-dimensional Principal Component Analysis by Arash Ali Amini Doctor of Philosophy in Electrical Engineering University of California, Berkeley Associate Professor Martin Wainwright, Chair Advances in data acquisition and emergence of new sources of data, in recent years, have led to generation of massive datasets in many fields of science and engineering. These datasets are usually characte...
متن کاملMultilevel Functional Principal Component Analysis.
The Sleep Heart Health Study (SHHS) is a comprehensive landmark study of sleep and its impacts on health outcomes. A primary metric of the SHHS is the in-home polysomnogram, which includes two electroencephalographic (EEG) channels for each subject, at two visits. The volume and importance of this data presents enormous challenges for analysis. To address these challenges, we introduce multilev...
متن کاملLocal functional principal component analysis
Covariance operators of random functions are crucial tools to study the way random elements concentrate over their support. The principal component analysis of a random function X is well-known from a theoretical viewpoint and extensively used in practical situations. In this work we focus on local covariance operators. They provide some pieces of information about the distribution of X around ...
متن کاملStructured functional principal component analysis.
Motivated by modern observational studies, we introduce a class of functional models that expand nested and crossed designs. These models account for the natural inheritance of the correlation structures from sampling designs in studies where the fundamental unit is a function or image. Inference is based on functional quadratics and their relationship with the underlying covariance structure o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics and Computing
سال: 2016
ISSN: 0960-3174,1573-1375
DOI: 10.1007/s11222-016-9679-5